文|智駕網(wǎng) 黃華丹
日前,英偉達(dá)聯(lián)合IDC(國(guó)際數(shù)據(jù)中心),共同發(fā)布了《現(xiàn)實(shí)+仿真,超大算力賦能自動(dòng)駕駛》白皮書。探討了目前自動(dòng)駕駛的發(fā)展情況以及車企在自動(dòng)駕駛開發(fā)過程中的需求和挑戰(zhàn)。
此處,我們將要點(diǎn)提煉如下:
1,乘用車市場(chǎng)自動(dòng)駕駛水平不斷提升,普及度增加,今年一季度L2級(jí)自動(dòng)駕駛在乘用車市場(chǎng)的新車滲透率已達(dá)23.2%。
2,自動(dòng)駕駛帶動(dòng)汽車行業(yè)向智能化躍遷,車企與科技公司合作促進(jìn)乘用車自動(dòng)駕駛水平提升。
3,自動(dòng)駕駛系統(tǒng)訓(xùn)練需要超大算力,AI超算中心可提供算力支持。
高級(jí)別自動(dòng)駕駛落地的困難讓今年的自動(dòng)駕駛行業(yè)趨于冷靜。商業(yè)化難以實(shí)現(xiàn),撤資、關(guān)停,明星公司也可以突然隕落。從外界看來,行業(yè)似乎充滿了不確定性。
但另一方面,從業(yè)者卻正以最大的耐心一步一步緩慢向終點(diǎn)靠近。
技術(shù)方面,目前的自動(dòng)駕駛已經(jīng)解決了99%的問題,而剩下的1%卻需要付出更多的工作。
這似乎已成為共識(shí)。終點(diǎn)好像就在眼前,卻又遙遙無期。
Corner case,成為自動(dòng)駕駛落地不得不跨越的下半場(chǎng)路障。
如何翻越?真實(shí)數(shù)據(jù)和仿真測(cè)試是訓(xùn)練自動(dòng)駕駛進(jìn)一步優(yōu)化必要的兩個(gè)路徑。而兩者,都需要超大算力的支持。
除了介紹自動(dòng)駕駛市場(chǎng)的現(xiàn)狀及對(duì)乘用車市場(chǎng)的推動(dòng)作用,白皮書也介紹了AI超算中心的構(gòu)建以及英偉達(dá)助力企業(yè)建立超算中心的平臺(tái)。
以下,我們來看具體白皮書內(nèi)容。
01 自動(dòng)駕駛發(fā)展現(xiàn)狀
首先來看自動(dòng)駕駛目前的發(fā)展情況。
報(bào)告指出,在乘用車領(lǐng)域,目前自動(dòng)駕駛技術(shù)整體發(fā)展良好,處于從L2到L3發(fā)展的階段。
根據(jù)IDC《中國(guó)自動(dòng)駕駛汽車市場(chǎng)數(shù)據(jù)追蹤報(bào)告》數(shù)據(jù),今年一季度L2級(jí)自動(dòng)駕駛在乘用車市場(chǎng)的新車滲透率已達(dá)23.2%,而去年同期僅為7.5%。
其中,主流量產(chǎn)合資品牌的L2級(jí)自動(dòng)駕駛已下探至人民幣18萬級(jí)別的車型,部分品牌已下探至10萬出頭。
報(bào)告指出,傳統(tǒng)自主品牌在電動(dòng)化與網(wǎng)聯(lián)化兩大領(lǐng)域均走在市場(chǎng)前列,并與互聯(lián)網(wǎng)大廠、AI科技公司在自動(dòng)駕駛領(lǐng)域開展了大量合作。
而造車新勢(shì)力則已開始提供如“導(dǎo)航駕駛輔助”之類實(shí)現(xiàn)起來更加復(fù)雜的駕駛輔助功能。并在上市車型中安裝支持更高級(jí)別自動(dòng)駕駛的配套硬件,以便在政策放開后,可隨時(shí)通過OTA在線實(shí)現(xiàn)自動(dòng)駕駛功能的升級(jí)。
此外,根據(jù)報(bào)告,從L3級(jí)開始要求汽車在一定條件下持續(xù)執(zhí)行全部的自動(dòng)駕駛?cè)蝿?wù),車輛既需要統(tǒng)籌各傳感器收集到的信號(hào),又需要其對(duì)駕駛輔助相關(guān)的所有功能實(shí)現(xiàn)統(tǒng)一調(diào)配,由自動(dòng)駕駛域的主控芯片統(tǒng)一向車輛的線控系統(tǒng)發(fā)出指令。車輛電子電氣架構(gòu)向域集中式發(fā)展也是自動(dòng)駕駛發(fā)展下必然的趨勢(shì)。
而在乘用車以外領(lǐng)域,Robotaxi仍處于商業(yè)試運(yùn)行階段,在礦區(qū)、港口、物流園區(qū)等封閉場(chǎng)景則已基本實(shí)現(xiàn)落地,而商用車領(lǐng)域則已可用輔助駕駛覆蓋高速環(huán)境,實(shí)現(xiàn)半封閉場(chǎng)景下的自動(dòng)駕駛。
對(duì)于汽車產(chǎn)業(yè)而言,自動(dòng)駕駛是行業(yè)智能化轉(zhuǎn)型的核心。尤其在乘用車領(lǐng)域,在電動(dòng)化轉(zhuǎn)型漸趨成熟后,智能化,尤其是智能駕駛方面的發(fā)展成為車企突圍的主要方向。但開發(fā)新的技術(shù)并不容易。
根據(jù)IDC數(shù)據(jù),有40%企業(yè)認(rèn)為科技企業(yè)的入局讓競(jìng)爭(zhēng)越加緊迫;技術(shù)更新迭代速度快,缺乏成熟的解決方案,導(dǎo)致新產(chǎn)品決策難;以及新老產(chǎn)品難以平衡,內(nèi)部資源分配難。
另一方面,對(duì)于自動(dòng)駕駛公司而言,由于自動(dòng)駕駛研發(fā)需要投入大量資金,而L4級(jí)別自動(dòng)駕駛商業(yè)化困難,對(duì)以發(fā)展自動(dòng)駕駛為主要業(yè)務(wù)的科技公司來說,維持資金鏈穩(wěn)定成為巨大的挑戰(zhàn)。
超過半數(shù)的科技公司認(rèn)為研發(fā)投入金額大,周期長(zhǎng),資金鏈壓力大。同時(shí),對(duì)科技公司來說,汽車行業(yè)知識(shí)積累不足,與主機(jī)廠溝通效率不高。
雖然存在困難,但對(duì)雙方而言,合作是順其自然的結(jié)果。今年以來,已經(jīng)有多家L4級(jí)別自動(dòng)駕駛科技公司宣布為主機(jī)廠開發(fā)L2、L3級(jí)別輔助駕駛系統(tǒng),包括輕舟智航、文遠(yuǎn)知行、智行者等,其中部分已完成系統(tǒng)的開發(fā),即將在主機(jī)廠部分車型實(shí)現(xiàn)落地。
自動(dòng)駕駛系統(tǒng)的前期開發(fā)依賴大量道路環(huán)境數(shù)據(jù)的輸入,形成貫穿感知、決策、規(guī)劃、控制多環(huán)節(jié)的算法。而后依然需要持續(xù)不斷地輸入數(shù)據(jù),繼續(xù)對(duì)算法的訓(xùn)練與驗(yàn)證,從而實(shí)現(xiàn)迭代。
主機(jī)廠與科技公司的合作,一方面解決了雙方當(dāng)下的需求,同時(shí),也可為自動(dòng)駕駛的發(fā)展積累實(shí)際道路數(shù)據(jù),推動(dòng)自動(dòng)駕駛的落地。
02 自動(dòng)駕駛系統(tǒng)的訓(xùn)練涉及超大量運(yùn)算
白皮書指出,利用人工智能手段訓(xùn)練自動(dòng)駕駛系統(tǒng),首先需要車輛像人類駕駛員一樣快速準(zhǔn)確地識(shí)別車道、行人、障礙物等駕駛環(huán)境中的關(guān)鍵信息。通過在海量數(shù)據(jù)基礎(chǔ)上不斷的重復(fù)訓(xùn)練與驗(yàn)證,使車輛對(duì)道路環(huán)境的認(rèn)知水平逐漸趨近于真實(shí)情景,判斷的準(zhǔn)確性在這一過程中不斷提升。
自動(dòng)駕駛需要機(jī)器對(duì)環(huán)境的判斷具備相當(dāng)高的準(zhǔn)確度,所以前期需要輸入大量的場(chǎng)景數(shù)據(jù)。
此外,自動(dòng)駕駛系統(tǒng)還需要像人類駕駛員一樣對(duì)環(huán)境信息做出回應(yīng)。這需要機(jī)器對(duì)同一道路環(huán)境中其它交通參與者的運(yùn)動(dòng)軌跡做出預(yù)判,從而規(guī)劃合理的行進(jìn)路線,并及時(shí)調(diào)整車輛的行進(jìn)狀態(tài)。這同樣需要大量的訓(xùn)練對(duì)系統(tǒng)的預(yù)測(cè)軌跡進(jìn)行矯正。
同時(shí),人工智能對(duì)人類駕駛員行為的學(xué)習(xí)是一個(gè)持續(xù)不斷的過程,量產(chǎn)車在上市后會(huì)回流海量的數(shù)據(jù),用于自動(dòng)駕駛算法模型的優(yōu)化。因而訓(xùn)練的規(guī)模會(huì)隨市場(chǎng)中車型存量的上升而不斷擴(kuò)大。
另一方面,由于真實(shí)路測(cè)信息無法涵蓋足夠豐富的長(zhǎng)尾場(chǎng)景,而且,真實(shí)路況下無法實(shí)踐部分具有危險(xiǎn)性的場(chǎng)景,因此,在自動(dòng)駕駛系統(tǒng)開發(fā)前期利用虛擬仿真技術(shù)開展仿真測(cè)試是更好的選擇。
即,將真實(shí)世界中的物理場(chǎng)景通過數(shù)學(xué)建模進(jìn)行數(shù)字化還原,在軟件程序所建構(gòu)的虛擬環(huán)境中測(cè)試自動(dòng)駕駛系統(tǒng)。
而且,仿真測(cè)試中通過運(yùn)行虛擬程序產(chǎn)生數(shù)據(jù),不僅測(cè)試速度遠(yuǎn)高于物理世界中行駛的車輛,還允許開發(fā)團(tuán)隊(duì)在組裝成本高昂的樣車之前即開始測(cè)試并驗(yàn)證系統(tǒng)算法。可最大限度提升實(shí)車測(cè)試的效率。
在仿真測(cè)試方面,英偉達(dá)基于Omniverse構(gòu)建了自動(dòng)駕駛汽車模擬器DRIVE Sim,可大規(guī)模地進(jìn)行物理精準(zhǔn)的傳感器仿真。開發(fā)人員可以在工作站上運(yùn)行可重復(fù)的仿真,然后在數(shù)據(jù)中心或云端擴(kuò)展為批量模式。
DRIVE Sim上包括DRIVE Replicator等多個(gè)應(yīng)用。DRIVE Replicator主要提供一系列專注于合成數(shù)據(jù)生成的功能,用于自動(dòng)駕駛汽車的訓(xùn)練和算法驗(yàn)證。DRIVE Sim和DRIVE Constellation還支持各個(gè)級(jí)別的自動(dòng)駕駛?cè)珬7抡?,包括軟件在環(huán)、硬件在環(huán)和其他在環(huán)仿真測(cè)試(模型、植物、人類,以及更多)。
仿真測(cè)試需要場(chǎng)景庫(kù)基于數(shù)據(jù)中心大規(guī)模重建或回放現(xiàn)實(shí)場(chǎng)景,并以平臺(tái)內(nèi)部資產(chǎn)的泛化縮小仿真與真實(shí)數(shù)采之間的差距,以修正虛擬環(huán)境中的結(jié)果和反饋,從而保證對(duì)虛擬世界的構(gòu)建與現(xiàn)實(shí)世界實(shí)時(shí)互通,因而也需要大算力的支持。
03 AI超算中心
對(duì)算法能力強(qiáng)的公司來說,自建數(shù)據(jù)中心是順其自然的選擇。一方面可解決安全問題,自有數(shù)據(jù)中心良好的封閉性可最大程度降低數(shù)據(jù)資產(chǎn)外溢的風(fēng)險(xiǎn)。同時(shí),長(zhǎng)期來看也是成本更低的選擇。
IDC的調(diào)研也顯示,自動(dòng)駕駛行業(yè)的開發(fā)團(tuán)隊(duì)對(duì)這一領(lǐng)域的投資將在未來穩(wěn)定增長(zhǎng)。
數(shù)據(jù)中心可為訓(xùn)練自動(dòng)駕駛系統(tǒng)提供巨大的算力,為支撐人工智能計(jì)算提供了重要的硬件基礎(chǔ)設(shè)施,其底層硬件技術(shù)路徑包括GPU、ASIC、FPGA和NPU。
其中,ASIC為專用芯片,針對(duì)專門的用途而設(shè)計(jì)。FPGA屬于半定制芯片,可通過編程重組電路,在研發(fā)與使用兩個(gè)階段均可以彌補(bǔ)定制電路靈活性方面的不足。NPU則是專門針對(duì)AI和深度學(xué)習(xí)所設(shè)計(jì)的芯片。工作原理是在電路層模擬人類神經(jīng)元和突觸,通過存儲(chǔ)和計(jì)算的一體化提高運(yùn)行效率。
英偉達(dá)可以提供適用于自動(dòng)駕駛汽車的基礎(chǔ)架構(gòu),包括開發(fā)自動(dòng)駕駛技術(shù)所需的數(shù)據(jù)中心全套硬件、軟件和工作流參考架構(gòu),涵蓋從原始數(shù)據(jù)采集到驗(yàn)證的每個(gè)環(huán)節(jié),為神經(jīng)網(wǎng)絡(luò)開發(fā)、訓(xùn)練和驗(yàn)證以及仿真測(cè)試提供所需的端到端基礎(chǔ)模塊。
蔚來就在使用NVIDIA HGX構(gòu)建綜合全面的數(shù)據(jù)中心基礎(chǔ)設(shè)施,并在此基礎(chǔ)上開發(fā)AI驅(qū)動(dòng)的軟件定義汽車,包括ET7、ET5。包括8個(gè)NVIDIA A100 GPU和NVIDIA ConnectX-6 InfiniBand 網(wǎng)卡。
此外,小鵬與阿里云合作在烏蘭察布建成了自動(dòng)駕駛智算中心“扶搖”。而阿里云,同樣是A100的大客戶。
自動(dòng)駕駛的發(fā)展道路注定是漫長(zhǎng)的,每一個(gè)細(xì)節(jié)都需要大量的修正。超大算力中心的構(gòu)建無疑將為大量真實(shí)數(shù)據(jù)的采集與運(yùn)算,以及仿真場(chǎng)景的建設(shè)提供條件。
大量訓(xùn)練是解決自動(dòng)駕駛Corner Case的必要路徑。建立超算中心或許也將成為后期自動(dòng)駕駛發(fā)展的必經(jīng)之路。