正在閱讀:

網(wǎng)紅聊天機(jī)器人ChatGPT的碳排放究竟多高?

掃一掃下載界面新聞APP

網(wǎng)紅聊天機(jī)器人ChatGPT的碳排放究竟多高?

粗略估計(jì),自ChatGPT于2022年11月30日上線以來,碳排放已超過814.61噸。

來源:視覺中國

文 | Shushu 環(huán)球零碳研究中心

最近關(guān)于AI聊天創(chuàng)作工具ChatGPT的討論很多。這是伊隆·馬斯克創(chuàng)建的OpenAI公司所研發(fā)。

先是微軟宣布再砸100億美金入股OpenAI,然后亞馬遜和美版“今日頭條”BuzzFeed宣布將在日常工作中啟用ChatGPT,同時(shí),百度也宣布將于3月推出“中國版”的ChatGPT聊天機(jī)器人。在多家科技公司推波助瀾后,ChatGPT瞬間引發(fā)全球關(guān)注。

一些網(wǎng)友開始瘋狂測試ChatGPT,比如寫代碼、寫劇本、寫小說、寫新聞、寫作業(yè)、廣告文案、知識搜查,甚至玩游戲等,而ChatGPT展現(xiàn)的能力也不負(fù)眾望,不僅對答如流,甚至還充滿智慧,洞察人性,比真人回答都絲毫不差。

還有一些網(wǎng)友開始談?wù)揅hatGPT的投入成本,像谷歌、華為、特斯拉、微軟、Meta、蘋果等,每年投入數(shù)以百億美元的研發(fā)費(fèi)用,被稱為燒錢無底洞。

但是,很少有人談?wù)揅hatGPT模型的環(huán)境成本。

我們要意識到,即使是數(shù)字產(chǎn)品也需要能源來開發(fā)和消耗。據(jù)統(tǒng)計(jì),信息和通信技術(shù) (ICT) 行業(yè)和數(shù)據(jù)中心行業(yè)在全球溫室氣體排放中所占比例相對較大,約占全球電力消耗的3-5%。

如果這些數(shù)字產(chǎn)品(從我們手機(jī)上運(yùn)行的應(yīng)用程序到在云端運(yùn)行的數(shù)據(jù)),一旦所消耗的電力不是由可再生能源產(chǎn)生的,就會產(chǎn)生碳排放。這就是機(jī)器學(xué)習(xí)模型,也會產(chǎn)生碳排放的原因。ChatGPT也不例外。

谷歌曾表示,公司總能源消耗的15%用于研究、開發(fā)和生產(chǎn)中與機(jī)器學(xué)習(xí)相關(guān)的計(jì)算。據(jù)NVIDIA和亞馬遜估計(jì),機(jī)器學(xué)習(xí)工作中推理處理占算力消耗的80%-90%。

這些模型所消耗的能源也影響著氣候變化。在本文中,我們將從碳足跡的角度來看一下ChatGPT對環(huán)境的影響。

這里我們可以采用廣泛使用的生命周期評估 (LCA)法,該法旨在涵蓋產(chǎn)品或過程生命周期的所有階段。

雖然生命周期評估 (LCA)法通常是評估產(chǎn)品從搖籃到墳?zāi)沟恼麄€(gè)階段的碳排放,這將考慮到原材料提取的所有過程對環(huán)境的影響。但此次對于ChatGPT的評估是僅專注于從制造設(shè)備到模型部署運(yùn)行,如下圖。

來源:[11]

綠色部分為本次算ChatGPT生命周期碳足跡的3個(gè)主要階段,分別為設(shè)備制造,模型訓(xùn)練,模型部署和運(yùn)行。

那么,這3個(gè)主要階段中,ChatGPT的碳排放究竟是多少?

01 ChatGPT設(shè)備制造階段的隱形碳排放

首先,我們來看設(shè)備制造階段碳排放。

因目前關(guān)于ChatGPT的設(shè)備制造相關(guān)信息有限,我們以另一個(gè)大型語言模型BLOOM的設(shè)備制造碳排放作為類比,來推測ChatGPT該階段碳排放。

據(jù)了解,BLOOM和ChatGPT的前身GPT-3的模型大小大致相同,分別為176b和175b參數(shù),因此設(shè)備方面也具有一定相似性。

設(shè)備制造階段的碳排放被稱為隱含碳。這是生產(chǎn)產(chǎn)品所涉及材料和過程相關(guān)的排放,例如訓(xùn)練和部署模型所需的計(jì)算設(shè)備。雖然這些排放的產(chǎn)生僅限于制造過程,但這一總量通常分布在設(shè)備使用期間,方法是將這部分排放總量除以使用時(shí)間。

BLOOM模型在含有Nvidia A100 40GB GPU的HPE Apollo 6500 Gen10 Plus服務(wù)器上進(jìn)行訓(xùn)練。根據(jù)相關(guān)資料,與HPE Apollo類似的服務(wù)器生產(chǎn)碳足跡2500kgCO2e(二氧化碳當(dāng)量)。這不包括服務(wù)器中使用的GPU的隱含碳排放,以論文[11]中估算,GPU的碳足跡約為150kgCO2e(二氧化碳當(dāng)量)。

以IDRIS的數(shù)據(jù),假設(shè)以6年的更換率和85%的平均使用率,用排放總量除以使用時(shí)間轉(zhuǎn)化為后,服務(wù)器每小時(shí)約0.056kgCO2e,GPU每小時(shí)約0.003kgCO2e。

根據(jù)[11]中表示,BLOOM訓(xùn)練總時(shí)間共持續(xù)108萬小時(shí),平均使用48個(gè)計(jì)算節(jié)點(diǎn)上的384個(gè)GPU,我們可以估計(jì)與模型訓(xùn)練相關(guān)的服務(wù)器隱含碳排放大約為7.57噸和GPU3.64噸,總計(jì)約11.2噸。

以此類推,根據(jù)相關(guān)資料顯示,ChatGPT的訓(xùn)練時(shí)間大約比BLOOM長3倍,單從這個(gè)角度估算,估算ChatGPT中模型訓(xùn)練的隱含碳排放總量約為33.6噸。

不過這部分隱含碳還不包括其余計(jì)算基礎(chǔ)設(shè)施(如網(wǎng)絡(luò)交換機(jī)、冷卻設(shè)備和其他設(shè)備)的隱含排放。

02 ChatGPT模型訓(xùn)練階段的碳排放

其次,估算模型訓(xùn)練階段碳排放。

因?yàn)镃hatGPT是基于GPT-3的一個(gè)升級版本,在GPT-3的模型架構(gòu)基礎(chǔ)上進(jìn)行了優(yōu)化并在訓(xùn)練時(shí)期增加了強(qiáng)化學(xué)習(xí)。以網(wǎng)上公開的數(shù)據(jù)表示,訓(xùn)練一個(gè)GPT-3約消耗1287 MWh(兆瓦時(shí))的電,相當(dāng)于排放了552噸碳。

但由于強(qiáng)化學(xué)習(xí)需要額外消耗的電力,ChatGPT在模型訓(xùn)練階段所產(chǎn)生的碳排放將大于552噸。

圖片
圖說:大型語言模型的碳排放

從這些大型語言模型的碳排放來看,ChatGPT前身GPT-3碳排放最大。據(jù)悉,美國人平均每年產(chǎn)生16.4噸碳排放,丹麥人平均每年產(chǎn)生11噸碳排放。因此,ChatGPT的模型訓(xùn)練碳排放多于50個(gè)丹麥人每年的碳排放。

03 運(yùn)行推理過程中ChatGPT的碳排放

再來估計(jì)運(yùn)行推理階段碳排放。

假設(shè)繼續(xù)把BLOOM作為類比,可以推測ChatGPT運(yùn)行階段的碳排放。

大型語言模型BLOOM曾在具有16個(gè)Nvidia A100 40GB GPU的Google Cloud Platform實(shí)例上部署并運(yùn)行了18天,共432小時(shí)。

前面提到BLOOM與ChatGPT前身GPT-3的模型大小大致相同,因此我們假設(shè)把相同的硬件用于ChatGPT,并在16個(gè)Nvidia A100 40GB GPU上運(yùn)行,并推測硬件利用率始終為100%。

由于ChatGPT公司OpenAI的總部位于美國舊金山,所以猜測ChatGPT的托管在美國西部。

使用ML CO2 Impact計(jì)算器,我們可以估算ChatGPT的每日碳排放為25.92 kg,如下:

來源:[10]

實(shí)際上16個(gè)A100 GPU的計(jì)算能力并不能滿足真實(shí)的需求,如果假設(shè)ChatGPT每天有100萬用戶咨詢,每個(gè)用戶有10個(gè)問題,每個(gè)問題有30個(gè)單詞,ChatGPT的每個(gè)響應(yīng)詞在A100 GPU上需要350毫秒,以此來計(jì)算:

100萬用戶*10個(gè)問題=10,000,000個(gè)響應(yīng)=每天300,000,000個(gè)單詞*每個(gè)單詞0.35秒/每小時(shí)3,600秒=每天29,167小時(shí)的A100 GPU時(shí)間

根據(jù)Cloud Carbon Footprint列出ChatGPT的Azure數(shù)據(jù)中心中A100的最低功耗46W(瓦特)和最高 407W(瓦特)。為了方便計(jì)算,假設(shè)ChatGPT處理器都處于工作狀態(tài),因此取該范圍的頂端消耗值。

每天29,167小時(shí)* 407W = 11,870kWh(千瓦時(shí))

根據(jù)Cloud Carbon Footprint,美國西部的排放因子為0.000322167噸/千瓦時(shí),所以ChatGPT運(yùn)行階段的碳排放是:

0.000322167 * 11,870 = 每天3.82噸

04 ChatGPT的總生命周期碳足跡

根據(jù)以上計(jì)算,我們最后合算總生命周期碳足跡。

自ChatGPT于2022年11月30日上線以來,運(yùn)行約60天,我們可以非常簡單粗略得到:

CHATGPT制造設(shè)備碳排放>33.41噸

CHATGPT模型訓(xùn)練碳排放>552噸

CHATGPT運(yùn)行60天碳排放≈3.82噸*60天≈229.2噸

三者相加后,CHATGPT自上線以來的生命周期碳足跡將大于814.61噸CO2e。

這個(gè)數(shù)值估計(jì)是基于一些粗略的假設(shè),因此帶有很多不確定性,但與BLOOM等的可比較語言模型的碳足跡的全面估計(jì)相比,也存在一定合理性。

不過,本文僅關(guān)注ChatGPT的CO2e排放量。除了CO2e排放外,其他類型的環(huán)境影響,包括用水、空氣污染、土壤污染等,也需要重點(diǎn)考慮。

最后,通過這個(gè)初步計(jì)算,希望能啟發(fā)機(jī)器學(xué)習(xí)模型的開發(fā)人員披露他們模型準(zhǔn)確的能耗或碳足跡。只有真正了解到這些信息,才能在我們討論如何減少我們的足跡時(shí),優(yōu)先解決那些產(chǎn)生最大碳減排的問題,同時(shí)評估模型的性能。

參考資料:

[1]https://arxiv.org/ftp/arxiv/papers/2204/2204.05149.pdf

[2]https://openai.com/blog/chatgpt/

[3]https://arxiv.org/pdf/2211.02001.pdf

[4]https://news.microsoft.com/2019/07/22/openai-forms-exclusive-computing-partnership-with-microsoft-to-build-new-azure-ai-supercomputing-technologies/

[5]https://arxiv.org/pdf/2111.00364.pdf

[6]https://kefm.dk/aktuelt/nyheder/2021/apr/foerste-officielle-vurdering-af-danmarks-globale-klimaaftryk

[7]https://storymaps.arcgis.com/stories/5417cd9148c248c0985a5b6d028b0277

[8]https://medium.com/towards-data-science/how-to-estimate-and-reduce-the-carbon-footprint-of-machine-learning-models-49f24510880

[9]https://towardsdatascience.com/the-carbon-footprint-of-chatgpt-66932314627d

[10]https://mlco2.github.io/impact/#publish

[11]ESTIMATING THE CARBON FOOTPRINT OF BLOOM, A 176B PARAMETER LANGUAGE MODEL

[12]https://towardsdatascience.com/how-to-estimate-and-reduce-the-carbon-footprint-of-machine-learning-models-49f24510880

來源:環(huán)球零碳研究中心

原標(biāo)題:網(wǎng)紅聊天機(jī)器人ChatGPT的碳排放究竟多高?

最新更新時(shí)間:02/23 13:55

本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人。

評論

暫無評論哦,快來評價(jià)一下吧!

下載界面新聞

微信公眾號

微博

網(wǎng)紅聊天機(jī)器人ChatGPT的碳排放究竟多高?

粗略估計(jì),自ChatGPT于2022年11月30日上線以來,碳排放已超過814.61噸。

來源:視覺中國

文 | Shushu 環(huán)球零碳研究中心

最近關(guān)于AI聊天創(chuàng)作工具ChatGPT的討論很多。這是伊隆·馬斯克創(chuàng)建的OpenAI公司所研發(fā)。

先是微軟宣布再砸100億美金入股OpenAI,然后亞馬遜和美版“今日頭條”BuzzFeed宣布將在日常工作中啟用ChatGPT,同時(shí),百度也宣布將于3月推出“中國版”的ChatGPT聊天機(jī)器人。在多家科技公司推波助瀾后,ChatGPT瞬間引發(fā)全球關(guān)注。

一些網(wǎng)友開始瘋狂測試ChatGPT,比如寫代碼、寫劇本、寫小說、寫新聞、寫作業(yè)、廣告文案、知識搜查,甚至玩游戲等,而ChatGPT展現(xiàn)的能力也不負(fù)眾望,不僅對答如流,甚至還充滿智慧,洞察人性,比真人回答都絲毫不差。

還有一些網(wǎng)友開始談?wù)揅hatGPT的投入成本,像谷歌、華為、特斯拉、微軟、Meta、蘋果等,每年投入數(shù)以百億美元的研發(fā)費(fèi)用,被稱為燒錢無底洞。

但是,很少有人談?wù)揅hatGPT模型的環(huán)境成本。

我們要意識到,即使是數(shù)字產(chǎn)品也需要能源來開發(fā)和消耗。據(jù)統(tǒng)計(jì),信息和通信技術(shù) (ICT) 行業(yè)和數(shù)據(jù)中心行業(yè)在全球溫室氣體排放中所占比例相對較大,約占全球電力消耗的3-5%。

如果這些數(shù)字產(chǎn)品(從我們手機(jī)上運(yùn)行的應(yīng)用程序到在云端運(yùn)行的數(shù)據(jù)),一旦所消耗的電力不是由可再生能源產(chǎn)生的,就會產(chǎn)生碳排放。這就是機(jī)器學(xué)習(xí)模型,也會產(chǎn)生碳排放的原因。ChatGPT也不例外。

谷歌曾表示,公司總能源消耗的15%用于研究、開發(fā)和生產(chǎn)中與機(jī)器學(xué)習(xí)相關(guān)的計(jì)算。據(jù)NVIDIA和亞馬遜估計(jì),機(jī)器學(xué)習(xí)工作中推理處理占算力消耗的80%-90%。

這些模型所消耗的能源也影響著氣候變化。在本文中,我們將從碳足跡的角度來看一下ChatGPT對環(huán)境的影響。

這里我們可以采用廣泛使用的生命周期評估 (LCA)法,該法旨在涵蓋產(chǎn)品或過程生命周期的所有階段。

雖然生命周期評估 (LCA)法通常是評估產(chǎn)品從搖籃到墳?zāi)沟恼麄€(gè)階段的碳排放,這將考慮到原材料提取的所有過程對環(huán)境的影響。但此次對于ChatGPT的評估是僅專注于從制造設(shè)備到模型部署運(yùn)行,如下圖。

來源:[11]

綠色部分為本次算ChatGPT生命周期碳足跡的3個(gè)主要階段,分別為設(shè)備制造,模型訓(xùn)練,模型部署和運(yùn)行。

那么,這3個(gè)主要階段中,ChatGPT的碳排放究竟是多少?

01 ChatGPT設(shè)備制造階段的隱形碳排放

首先,我們來看設(shè)備制造階段碳排放。

因目前關(guān)于ChatGPT的設(shè)備制造相關(guān)信息有限,我們以另一個(gè)大型語言模型BLOOM的設(shè)備制造碳排放作為類比,來推測ChatGPT該階段碳排放。

據(jù)了解,BLOOM和ChatGPT的前身GPT-3的模型大小大致相同,分別為176b和175b參數(shù),因此設(shè)備方面也具有一定相似性。

設(shè)備制造階段的碳排放被稱為隱含碳。這是生產(chǎn)產(chǎn)品所涉及材料和過程相關(guān)的排放,例如訓(xùn)練和部署模型所需的計(jì)算設(shè)備。雖然這些排放的產(chǎn)生僅限于制造過程,但這一總量通常分布在設(shè)備使用期間,方法是將這部分排放總量除以使用時(shí)間。

BLOOM模型在含有Nvidia A100 40GB GPU的HPE Apollo 6500 Gen10 Plus服務(wù)器上進(jìn)行訓(xùn)練。根據(jù)相關(guān)資料,與HPE Apollo類似的服務(wù)器生產(chǎn)碳足跡2500kgCO2e(二氧化碳當(dāng)量)。這不包括服務(wù)器中使用的GPU的隱含碳排放,以論文[11]中估算,GPU的碳足跡約為150kgCO2e(二氧化碳當(dāng)量)。

以IDRIS的數(shù)據(jù),假設(shè)以6年的更換率和85%的平均使用率,用排放總量除以使用時(shí)間轉(zhuǎn)化為后,服務(wù)器每小時(shí)約0.056kgCO2e,GPU每小時(shí)約0.003kgCO2e。

根據(jù)[11]中表示,BLOOM訓(xùn)練總時(shí)間共持續(xù)108萬小時(shí),平均使用48個(gè)計(jì)算節(jié)點(diǎn)上的384個(gè)GPU,我們可以估計(jì)與模型訓(xùn)練相關(guān)的服務(wù)器隱含碳排放大約為7.57噸和GPU3.64噸,總計(jì)約11.2噸。

以此類推,根據(jù)相關(guān)資料顯示,ChatGPT的訓(xùn)練時(shí)間大約比BLOOM長3倍,單從這個(gè)角度估算,估算ChatGPT中模型訓(xùn)練的隱含碳排放總量約為33.6噸。

不過這部分隱含碳還不包括其余計(jì)算基礎(chǔ)設(shè)施(如網(wǎng)絡(luò)交換機(jī)、冷卻設(shè)備和其他設(shè)備)的隱含排放。

02 ChatGPT模型訓(xùn)練階段的碳排放

其次,估算模型訓(xùn)練階段碳排放。

因?yàn)镃hatGPT是基于GPT-3的一個(gè)升級版本,在GPT-3的模型架構(gòu)基礎(chǔ)上進(jìn)行了優(yōu)化并在訓(xùn)練時(shí)期增加了強(qiáng)化學(xué)習(xí)。以網(wǎng)上公開的數(shù)據(jù)表示,訓(xùn)練一個(gè)GPT-3約消耗1287 MWh(兆瓦時(shí))的電,相當(dāng)于排放了552噸碳。

但由于強(qiáng)化學(xué)習(xí)需要額外消耗的電力,ChatGPT在模型訓(xùn)練階段所產(chǎn)生的碳排放將大于552噸。

圖片
圖說:大型語言模型的碳排放

從這些大型語言模型的碳排放來看,ChatGPT前身GPT-3碳排放最大。據(jù)悉,美國人平均每年產(chǎn)生16.4噸碳排放,丹麥人平均每年產(chǎn)生11噸碳排放。因此,ChatGPT的模型訓(xùn)練碳排放多于50個(gè)丹麥人每年的碳排放。

03 運(yùn)行推理過程中ChatGPT的碳排放

再來估計(jì)運(yùn)行推理階段碳排放。

假設(shè)繼續(xù)把BLOOM作為類比,可以推測ChatGPT運(yùn)行階段的碳排放。

大型語言模型BLOOM曾在具有16個(gè)Nvidia A100 40GB GPU的Google Cloud Platform實(shí)例上部署并運(yùn)行了18天,共432小時(shí)。

前面提到BLOOM與ChatGPT前身GPT-3的模型大小大致相同,因此我們假設(shè)把相同的硬件用于ChatGPT,并在16個(gè)Nvidia A100 40GB GPU上運(yùn)行,并推測硬件利用率始終為100%。

由于ChatGPT公司OpenAI的總部位于美國舊金山,所以猜測ChatGPT的托管在美國西部。

使用ML CO2 Impact計(jì)算器,我們可以估算ChatGPT的每日碳排放為25.92 kg,如下:

來源:[10]

實(shí)際上16個(gè)A100 GPU的計(jì)算能力并不能滿足真實(shí)的需求,如果假設(shè)ChatGPT每天有100萬用戶咨詢,每個(gè)用戶有10個(gè)問題,每個(gè)問題有30個(gè)單詞,ChatGPT的每個(gè)響應(yīng)詞在A100 GPU上需要350毫秒,以此來計(jì)算:

100萬用戶*10個(gè)問題=10,000,000個(gè)響應(yīng)=每天300,000,000個(gè)單詞*每個(gè)單詞0.35秒/每小時(shí)3,600秒=每天29,167小時(shí)的A100 GPU時(shí)間

根據(jù)Cloud Carbon Footprint列出ChatGPT的Azure數(shù)據(jù)中心中A100的最低功耗46W(瓦特)和最高 407W(瓦特)。為了方便計(jì)算,假設(shè)ChatGPT處理器都處于工作狀態(tài),因此取該范圍的頂端消耗值。

每天29,167小時(shí)* 407W = 11,870kWh(千瓦時(shí))

根據(jù)Cloud Carbon Footprint,美國西部的排放因子為0.000322167噸/千瓦時(shí),所以ChatGPT運(yùn)行階段的碳排放是:

0.000322167 * 11,870 = 每天3.82噸

04 ChatGPT的總生命周期碳足跡

根據(jù)以上計(jì)算,我們最后合算總生命周期碳足跡。

自ChatGPT于2022年11月30日上線以來,運(yùn)行約60天,我們可以非常簡單粗略得到:

CHATGPT制造設(shè)備碳排放>33.41噸

CHATGPT模型訓(xùn)練碳排放>552噸

CHATGPT運(yùn)行60天碳排放≈3.82噸*60天≈229.2噸

三者相加后,CHATGPT自上線以來的生命周期碳足跡將大于814.61噸CO2e。

這個(gè)數(shù)值估計(jì)是基于一些粗略的假設(shè),因此帶有很多不確定性,但與BLOOM等的可比較語言模型的碳足跡的全面估計(jì)相比,也存在一定合理性。

不過,本文僅關(guān)注ChatGPT的CO2e排放量。除了CO2e排放外,其他類型的環(huán)境影響,包括用水、空氣污染、土壤污染等,也需要重點(diǎn)考慮。

最后,通過這個(gè)初步計(jì)算,希望能啟發(fā)機(jī)器學(xué)習(xí)模型的開發(fā)人員披露他們模型準(zhǔn)確的能耗或碳足跡。只有真正了解到這些信息,才能在我們討論如何減少我們的足跡時(shí),優(yōu)先解決那些產(chǎn)生最大碳減排的問題,同時(shí)評估模型的性能。

參考資料:

[1]https://arxiv.org/ftp/arxiv/papers/2204/2204.05149.pdf

[2]https://openai.com/blog/chatgpt/

[3]https://arxiv.org/pdf/2211.02001.pdf

[4]https://news.microsoft.com/2019/07/22/openai-forms-exclusive-computing-partnership-with-microsoft-to-build-new-azure-ai-supercomputing-technologies/

[5]https://arxiv.org/pdf/2111.00364.pdf

[6]https://kefm.dk/aktuelt/nyheder/2021/apr/foerste-officielle-vurdering-af-danmarks-globale-klimaaftryk

[7]https://storymaps.arcgis.com/stories/5417cd9148c248c0985a5b6d028b0277

[8]https://medium.com/towards-data-science/how-to-estimate-and-reduce-the-carbon-footprint-of-machine-learning-models-49f24510880

[9]https://towardsdatascience.com/the-carbon-footprint-of-chatgpt-66932314627d

[10]https://mlco2.github.io/impact/#publish

[11]ESTIMATING THE CARBON FOOTPRINT OF BLOOM, A 176B PARAMETER LANGUAGE MODEL

[12]https://towardsdatascience.com/how-to-estimate-and-reduce-the-carbon-footprint-of-machine-learning-models-49f24510880

來源:環(huán)球零碳研究中心

原標(biāo)題:網(wǎng)紅聊天機(jī)器人ChatGPT的碳排放究竟多高?

最新更新時(shí)間:02/23 13:55

本文為轉(zhuǎn)載內(nèi)容,授權(quán)事宜請聯(lián)系原著作權(quán)人。